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A New Sample Size Formula for Regression

ABSTRACT

The focus of this research was to determine the efficacy of a new method of selecting

sample sizes for multiple linear regression. A Monte Carlo simulation was used to study both

empirical predictive power rates and empirical statistical power rates of seven methods: the new

method, Park and Dudycha (1974), Cohen (1988), Gatsonis and Sampson (1989), Green (1991),

Pedhazur and Schmelkin (1991), and Stevens (1992). The power rates of the new method were

found to be superior, both relatively and absolutely, to other methods across most conditions

examined. The results also demonstrate both the importance of using an effect size for

determining regression sample sizes and the relative importance of predictive power over

statistical power for regression. The new method of sample size selection developed in this

paper provides a relatively simple means to account for both concerns.

OBJECTIVES

Most researchers who use regression analysis to develop prediction equations are not only

concerned with whether the multiple correlation coefficient or some particular predictor is

significant, but they are also especially concerned with the generalizability of the regression model

developed. However, the process of maximizing the correlation between the observed and

predicted criterion scores requires mathematical capitalization on chance; that is, the correlation

obtained is a maximum only for the particular sample from which it was calculated. If the

estimate of the population multiple correlation decreases too much in a second sample, the

regression model has little value. Because of this maximization on chance variation, researchers

must ensure that their studies have adequate predictive power so that results will generalize. The
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best way to ensure predictive power in regression is to use a sufficiently large sample. This paper

introduces and tests a new method for selecting appropriate sample sizes.

Why A New Method?

First of all, despite encouragement from many scholars, most notably Cohen (1977, 1988),

many researchers continue to ignore power in their studies. This unfortunate fact has been

documented on several occasions (Cohen ,1992; Sedlmeier & Gigerenzer, 1989; Stevens, 1992b).

Indeed, this situation is compounded for multiple regression research. As Olejnik noted in 1984

and was confirmed during the current research, many regression textbooks avoid the issue of

sample size selection completely (e.g. Dunn & Clark, 1974; Kleinbaum, Kupper, & Muller, 1987;

Montgomery & Peck, 1992; Weisberg, 1985) and most simply provide a rule-of-thumb as a

sidebar to a discussion of cross-validation (e.g. Cooley & Lohnes, 1971; Harris, 1985; Kerlinger

& Pedhazur, 1973; Tabachnick & Fidell, 1989).

Next, several well-known methods exist for determining sample sizes for multiple linear

regression. These methods can be grouped loosely into three categories: subject-to-variable ratio

rules-of-thumb, statistical power analysis, and cross-validation analysis. Unfortunately, there are

faults and contradictions among the various methods. For example, how does one reconcile

differences between a 15-subjects-per-variable ratio (Stevens, 1986) and a 30-subjects-per-

variable ratio (Pedhazur & Schmelkin, 1991)? Furthermore, Cohen's (1988) methods are derived

from a fixed model, and statistical power, approach to regression; however, it is often suggested

that a random model, cross-validation approach is most appropriate in social sciences.

Additionally, Park and Dudycha's (1974) work is largely ignored, perhaps because the tables they

provide are both incomplete and complicated.
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Therefore, the purpose of this paper is to validate, through a Monte Carlo power study, a

new and accessible method for calculating adequate sample sizes for multiple linear regression

analyses. The sample size formula developed in this paper is not simply a rule-of-thumb; indeed,

the new method differs from rules-of-thumb because it requires the use of an effect size.

Furthermore, the new method will work from a random model perspective and does not require

the researcher to use an incomplete or complicated set of tables for estimating necessary sample

sizes.

PERSPECTIVES

Multiple Linear Regression

Multiple regression is a general and flexible data analytic technique that can be used either

to predict or to explain phenomena (Browne, 1975; Cohen, 1968; Cohen & Cohen, 1983). The

difference between the two purposes is in the interpretation of the results. Multiple regression can

be used to help explain the variance of a dependent variable, or criterion, by using information

from at least two independent variables, or predictors. The emphasis is on testing theoretical

models and the relative importance of individual independent variables is especially meaningful

(Kerlinger & Pedhazur, 1973). Furthermore, the degree of relationship between the predictors

and the criterion is of interest (Cattin, 1980a). Practical application is the main emphasis of

regression analysis used in prediction studies. A researcher desires to develop an efficient

regression equation that optimally combines predictor scores in order to predict a subject's score

on a particular criterion variable. The choice of predictors is determined primarily by their

potential effectiveness in enhancing the prediction of the dependent variable.
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The statistical techniques are the same for both situations. Weights are derived for a set of

independent variables such that the resulting linear combination of predictors is maximally

correlated with the dependent variable. In linear regression this is accomplished through the

criterion of least squares; that is, the sum of the squared errors of prediction is minimized. The

coefficient of multiple correlation is obtained by correlating the dependent variable scores with the

optimally weighted set of predictors.

As noted above, the process of maximizing the correlation between the observed and

predicted criterion scores requires mathematical capitalization on chance probabilities. When the

regression equation is used with a second sample from the same population, the model will not

predict as well as it did in the original sample. Consequently, the estimate of the population

multiple correlation will decrease in the second sample. Researchers can ensure adequate

predictive power of their regression models, and thus stable regression weights, by choosing

appropriately large sample sizes. Therefore, the remainder of this paper examines the issue of

sample size in multiple regression. Before sample size selection and power can be discussed in

more detail, however, it is important to understand the basic perspective of regression analysis

from which the authors proceed.

Two Regression Models

There are two models that can be used in regression analyses (Brogden, 1972; Sampson,

1974). The fixed model, also called the regression model or the conditional model, assumes that

the researcher is able to select or control the values of the independent variables before measuring

subjects on the random dependent variable. In the random model, also called the correlation

model or the unconditional model, both the predictors and the criterion are sampled together from
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a joint multivariate normal distribution. The more stringent random model assumption of a joint

distribution of the variables subsumes the fixed model assumptions of conditional normality and

equal variances (Dunn & Clark, 1974). This random model is more useful to social scientists

because they typically measure random subjects on predictors and the criterion simultaneously,

thus they are not able to fix the values for the independent variables (Brogden, 1972; Cattin,

1980b; Claudy, 1972; Drasgow, Dorans, & Tucker, 1979; Herzberg, 1969; Park & Dudycha,

1974; Stevens, 1986, 1992a).

Mathematically, the two models are identical under a true null hypothesis of zero multiple

correlation; but when the null hypothesis is not true the models differ (Herzberg, 1969). The

distributional theory, and thus the mathematics, is much more complicated under the random

model because the random model recognizes and accounts for the variation in both the criterion

and the predictors (Claudy, 1972; Drasgow et al., 1979; Gatsonis & Sampson, 1989; Herzberg,

1969). Consequently, most research has used assumptions of the fixed model (Drasgow et al.,

1979), "hoping that there will be little practical difference between the two models" (Herzberg,

1969, p. 2). Indeed, most textbook authors fail to distinguish between the two models

(Barcikowski, 1980; Cummings, 1982), choosing instead to discuss, either explicitly or implicitly,

a fixed model regression (e.g. Cohen & Cohen, 1983; Draper & Smith, 1966; Kerlinger &

Pedhazur, 1973). Claudy (1972) noted, however, that misapplication of the fixed model to

random model data causes biased estimates of the population parameters. Therefore, it is

imperative that researchers understand the differences between the models. For more complete

discussion of the two models, the reader is referred to Dunn and Clark (1974), Johnson and

Leone (1977), and Sampson (1974).
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The null hypotheses that are tested differ between the two models. Because researchers

"fix" the values of the independent variables when using the fixed model approach, the hypotheses

of interest are often written in terms of the predictors: More specifically, the hypotheses test the

weights (called partial regression coefficients) that are given to the predictors. Because fixed

predictor values are often mutually exclusive and uncorrelated, the fixed model can be used to

perform analysis of variance. Indeed, in standard multiple regression (as opposed to hierarchical

or stepwise regression), the same hypothesis tests the predictor weight (b1), the partial correlation

(pr;), and the semi-partial correlation (sr;) (Tabachnick & Fidell, 1989). The predictors need not

be independent to use a fixed model approach, however; this is one reason Cohen (1968) called

regression a more general and flexible statistical technique than analysis of variance.

Using a random model approach, a researcher is primarily interested in the relationship

between the set of predictor variables and the criterion. Therefore,"the null hypothesis tests the

multiple correlation, p, to test the significance of the entire model. With only a single predictor,

the two hypotheses, Ho: p=0 and 110: B=0, are equivalent and thus the two models are equivalent

(Cohen & Cohen, 1983; Dunn & Clark, 1974; Kraemer & Thiemann, 1987). Additionally, it

should be noted that both models can be used for prediction, but only the fixed model can be used

appropriately for explanation (in an experimental sense). Most of the discussion that follows is

approached from a random model perspective.

Cross-Validation and Shrinkage

Because of the capitalization on chance sample covariation, the multiple correlation

calculated in the sample is necessarily an overestimate of the population multiple correlation

(Huberty & Mourad, 1980). That is, the expected value of the multiple correlation is larger than
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the true population value, or E(R) > p (Herzberg, 1969). Morrison (1976) reported that when

p=0, E(R2) = p/N-1, where p is the number of predictors and N is the sample size; however, an

unbiased estimate would yield E(R2)=0 when p=0. Consequently, researchers have employed a

number of methods to "shrink" R2 and thereby provide better estimates of true population multiple

correlations. One method used by researchers requires empirical cross-validation, or data-

splitting (Cattin, 1980a; Kerlinger & Pedhazur, 1973; Mosier, 1951; Picard & Cook, 1984). That

is, the researcher builds the regression model using a derivation sample (usually half a random

sample) and then applies the prediction equation to a validation sample to determine how well it

predicts the criterion variable in the second sample (Stevens, 1992a). The correlation between the

observed and predicted scores in the validation sample serves as an estimate of the population

cross-validated multiple correlation (Cattin, 1980a, 1980b). Other variations of this method have

been suggested, including double-cross-validation and jackknifing (Cummings, 1982; Huberty &

Mourad, 1980; Kerlinger & Pedhazur, 1973).

Unfortunately, when using empirical cross-validation, the regression equation is not built

using the entire sample. Therefore, formula methods of shrinkage are typically preferred to

empirical cross-validation so that the entire sample may be used for model-building. Many such

formulas have been proposed for the fixed model (Ezekiel, 1930; Lord, 1950; Nicholson, 1960;

Rozeboom, 1978; Wherry, 1931) and also for the random model (Browne, 1975; Darlington,

1968; Herzberg, 1969; Stein, 1960). Indeed, several formula estimates have been shown superior

to the empirical cross-validation techniques (Cattin, 1980a; 1980b; Kennedy, 1988; Murphy,

1982; Schmitt, Coyle, & Rauschenberger, 1977). Some confusion exists about the use of these

"shrinkage" formulas, however.
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Two types of formulas have been developed: shrinkage estimates and cross-validity

estimates (see Table 1). Shrinkage formulas are used to estimate more accurately the squared

population multiple correlation, p2, also called the coefficient of determination; cross-validity

formulas provide more accurate estimates of the squared population cross-validity coefficient, pct.

The values of Reg, the sample estimates of cross-validity, will vary from sample to sample;

however, the expected value of RO2 (the average over many samples), approximates p02. The

cross-validity coefficient can be thought of as the squared correlation between the actual

population criterion values and the criterion scores predicted by the sample regression equation

when applied to the population or to another sample (Kennedy, 1988; Schmitt et al., 1977).

Insert Table 1 about here

Because R2 is a positively biased estimator of both p2 and pct, such that E(R2) > p2 > pc2,

researchers must report an appropriate shrunken R2 (Herzberg, 1969). An estimate of p2 is rarely

useful for a researcher interested in developing a regression equation to be used for prediction; for

prediction purposes, researchers should report Act (Cattin, 1980b; Huberty & Mourad, 1980). It

should be noted, however, that as the number of subjects increases relative to the number of

predictors, both R2 and p2 converge toward p2, and therefore the amount of shrinkage decreases

(Cattin, 1980a). Similarly, the overestimation of p2, and thus the shrinkage, is greatest when both

N and R2 are small (Cohen & Cohen, 1983; Schmitt et al., 1977).

The most common estimate of shrinkage reported in the literature is an adjusted R2 that is

attributed most frequently to Wherry (1931). This formula for "adjusted" R2,
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1182= 1 - (1-R2)(N-1)/(N-p-1), is an unbiased estimate of p2, however, not of p2. Therefore, not

only is Wherry's estimate not practical for prediction studies, but it also overestimates pct and

thus is incorrect (Darlington, 1968). This is unfortunate because the most popular computer

statistical packages, SAS, SPSS, and BMDP, use shrinkage estimates of p2 rather than cross-

validity estimates of p02 (Kennedy, 1988; Stevens, 1992a). Indeed, Uhl and Eisenberg (1970)

found that a cross-validity estimate (which they attribute to Lord, 1950) was consistently more

accurate than Wherry's shrinkage formula. Therefore, researchers should report a cross-validity

coefficient in prediction studies. Some of the more familiar cross-validity formulas are those by

Stein (1960), Lord (1950), Nicholson (1960), and Browne (1975).

Methods for Selecting Sample Sizes

The distinction between the fixed and random models becomes particularly relevant when

analyzing power and selecting sample sizes. Indeed, only Park and Dudycha (1974), Sawyer

(1982), and Gatsonis and Sampson (1989) have discussed the random model directly for sample

size calculations. Cohen and Cohen (1983), Kraemer and Thiemann (1987), Cohen (1988), and

others have approached power from a fixed model approach. The differences between the two

models in regard to power and sample size selection are explained in more detail in the following

section. First, however, some comments are made about the many rules-of-thumb.

Rules-of-Thumb for Selecting Sample Size

The most extensive literature regarding sample sizes in regression analysis is in the area of

cross-validation. Many scholars have suggested rules-of-thumb for choosing sample sizes that

they claim will provide reliable estimates of the population regression coefficients. This ability of

regression coefficients to generalize to other samples from the same population may be considered

11
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predictive power. The most common method for analyzing this predictive power is through

shrinkage or cross-validation estimates. A review of Table 1 shows that all shrinkage estimates

are functions of the number of subjects and the number of predictors.

Therefore, scholars have recommended subject-to-variable ratios that purportedly will

provide an "acceptable" amount of shrinkage. That is, with a large enough ratio of subjects to

predictors, the estimated regression coefficients will be reliable and will closely reflect the true

population parameters since shrinkage will be slight (Miller & Kunce, 1973; Pedhazur &

Schmelkin, 1991; Tabachnick & Fidell, 1989). Put another way, a larger subject-to-variable ratio

is required for higher predictive power. These rules-of-thumb typically take the form of a subject-

to-predictor (N/p) ratio. For example, Table 2 shows that statisticians have recommended using

as small a ratio as 10 subjects to each predictor and as large a ratio as 40:1. Harris (1985) noted

that ratio rules-of-thumb clearly break down for small numbers of predictors. That is, if only two

predictors are used in a study, a 10:1 rule would require only 20 subjects, usually far too few for

estimating reliable regression coefficients.

Insert Table 2 about here

Because of such obvious shortcomings of subject-to-variable ratios, some scholars have

suggested that a minimum of 100, or even 200, subjects is necessary regardless of the number of

predictors (e.g. Kerlinger & Pedhazur, 1973). Harris indicated that no systematic studies have

been performed to analyze the use of a ratio rule versus a difference rule, say N - p > 50. More

recently, however, Green (1991) did find that a combination formula such as N > 50 + 8p was

12
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much better than a subject-to-variable ratio. More complex rules-of-thumb have been developed

by Green (1991) and Sawyer (1982) that do account for some measure of effect size.

Unfortunately, Green simply has developed a formula for Cohen's (1988) tables. Sawyer's

method, although mathematically more elegant, uses an unintuitive "inflation factor" for mean

squared error rather than a more recognizable effect size. Finally, perhaps the most widely used

rule-of-thumb was described by Olejnik (1984): "use as many subjects as you can get and you can

afford" (p. 40).

Fixed Model Approach

"The power of a statistical test is the probability that it will yield statistically significant

results" (Cohen, 1988, p. 1). That is, statistical power is the probability of rejecting the null

hypothesis when the null hypothesis is indeed false. Statistical power analysis requires the

consideration of four parameters: level of significance, power, effect size, and sample size. These

four parameters are related such that when any three are fixed, the fourth is mathematically

determined (Cohen, 1992). Therefore, it becomes obvious that it is necessary to consider power,

alpha, and effect size when attempting to determine a proper sample size. The following section

examines sample size requirements from the statistical power, fixed model framework from which

Cohen (1988) and Cohen and Cohen (1983) proceed. Recall that this fixed model approach,

however, is most useful when researchers use regression as a means to explain the variance of a

phenomenon in lieu of analysis of variance.

Overall Test of the Regression Model. In any statistical analysis, there are three strategies

for choosing an appropriate effect size: (a) use effect sizes found in previous studies, (b) decide

on some minimum effect that will be practically significant, or (c) use conventional small, medium,

13
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and large effects (Cohen & Cohen, 1983). Cohen (1988) defined effect size in fixed model

multiple regression as a function of the squared multiple correlation, specifically f2 = R2/(1-R2).

Since R2 can be used in the formulas directly, Cohen also defined effect sizes in terms of R2 such

that small effect R2=.02, medium effect R2=.13, and large effect R2=.26.

In order to calculate the required sample size to reach a desired level of power for testing

the significance of R2, Cohen's (1988) Case 0, a researcher needs the following information: (a)

level of significance, a, (b) degrees of freedom for the numerator of the F ratio, u, which is the

number of independent variables, (c) degrees of freedom for the denominator of the F ratio, v, and

(d) desired power. Sample size is calculated as N = 1(1-R2)/R2, where 2L is the noncentrality

parameter required for the noncentral F-distribution. Cohen's (1988) tables provide the )t. needed

for the sample size formula.

It should be noted that computing the degrees of freedom for the denominator of the F

ratio (parameter v) can be problematic, since v is a function of the yet-to-be-determined N (i.e.,

v = N-u-1). However, Cohen (1988) suggested that a trial value of v=120 will usually yield

sufficient accuracy. Furthermore, it should be noted that the newer Cohen (1988) tables differ

from previous tables in this regard. Neither Cohen (1977) nor Cohen and Cohen (1983) required

the determination of the parameter v. Examination of the tables reveals that the earlier tables are

equivalent to the Cohen (1988) tables with v fixed at oz, (see footnote 3 in Cohen, 1988, p. 551,

for an explanation). Therefore, in the earlier editions, the sample size formula differs slightly from

the newer formula: N = [L(1-R2)/R21-Fu+1, where L is the noncentrality parameter and u is the

number of predictors. Cohen (1992) presented an abbreviated sample size table that provides

sample sizes directly.

14
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Green (1991) developed a rule-of-thumb based on Cohen's power analysis approach to

sample size selection. However, Green's rule is valid only for Power=.80 and a =.05, and is most

effective for moderate R2 estimates. Sample size is defined using the Cohen formula:

N z L(1-R2)/R2 (Green, 1991, p. 504). The rule-of-thumb developed by Green is a method for

approximating L, so that researchers can estimate sample size without having to consult a table

for )1.. The method for approximating L follows these steps: (a) for the first predictor, L=8, (b)

for the second through tenth predictors, L increases with each additional predictor by 1.5, 1.4,

1.3, 1.2, 1.1, 1.0, 0.9, 0.8, and 0.7, respectively (algebraically, L=6.4+1.65m-0.05m2 for m<11),

(c) for each additional predictor after the tenth, L increases by 0.6. Through comparison of a

variety of rules-of-thumb, Green concluded that the rule-of-thumb of N z 50 + 8p was more

accurate than the simpler rules (e.g. N 10p) for the case of medium effect with Power=.80.

However, Green found his approximation of Cohen's tables to be the most accurate rule-of-

thumb.

Test of the Individual Predictors. Other scholars have addressed the issue ofpower in

regard to the test of the relationship between the individual independent variables and the

dependent variable. These scholars have taken an approach to selecting sample size based on the

statistical power of the t-test used to test the partial regression coefficients (Kraemer &

Thiemann, 1987; Milton, 1986; Neter, Wasserman, & Kutner, 1990). Cohen (1988) called this

circumstance Case 1-1, where the null hypothesis tested is concerned with the unique contribution

of a single independent variable to R2. Cohen reminds us that the results of the F-test for

proportion of variance of a particular predictor are identical to the results of the t-test performed

on the partial regression coefficient; each provides a test of the independent variable's unique

15
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contribution to the criterion. Cohen (1988) also provides several other power analyses for partial

regression models and coefficients.

Tests of the individual predictors may be useful in selecting predictors to include in a final

model or in a regression analysis performed to analyze variance. However, these tests are not

useful for those social scientists who wish to predict scores on some criterion or simply to

describe an overall relationship. Therefore, the randOm model approach, which is more useful in

prediction studies, is addressed in the next section.

Random Model Approach.

The random model of regression recognizes and accounts for extra variability because, in

another replication, different values for the independent variables will be obtained (Gatsonis &

Sampson, 1989). Because it is not known which specific values for the independent variables will

be sampled on successive replications, Park and Dudycha (1974) took a cross-validation approach

to calculating sample sizes. They noted that such a cross-validation approach is applicable to both

the random and the fixed models of regression; however, because the fixed model poses no

practical problems, they emphasized the random model. Park and Dudycha derived the following

sample size formula: [(1-p2)8 12/p21 p + 2, where 812 is the noncentrality parameter for the

t-distribution. The fixed model formula they derived was N z (1 p2)812 /p 2 (note the similarity to

Cohen's formula, with only a difference in the noncentrality parameter used in derivation).

Furthermore, the random model only differs from the fixed model by (p+2); that is, the random

model requires (p+2) more subjects than the fixed model according to the Park and Dudycha

calculations.
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The basic premise of Park and Dudycha's (1974) method of sample size selection is that

researchers can estimate how close they want to estimate p from pc. That is, researchers

determine the probability with which they want to approximate p within some chosen error

tolerance. The formula for this probability is: P(p- pc s E) = y. The researcher chooses (a) an

expected p2 as the effect size, (b) the error willing to be tolerated, E, and (c) the probability of

being within that error bound, y. The tables provided by Park and Dudycha (most of which were

reprinted in Stevens, 1986, 1992a) can then be consulted with these values. It should be noted

that Park & Dudycha's tables were one factor that led Stevens to suggest a 15:1 subject-to-

variable ratio as a rule of thumb.

Even though Gatsonis and Sampson (1989) calculated tables for the random model, they

concluded that Cohen's (1977) approximation of the conditional model was also an adequate

approximation to the unconditional model. After comparing their own tables to Cohen's (1977)

tables, Gatsonis and Sampson determined that Cohen's approximations generally underestimated

the exact required sample sizes only slightly. Gatsonis and Sampson recommended that

researchers add five to Cohen's tabled values, especially for models with up to 10 predictors.

The Predictive Power Method for Selecting Sample Sizes

The most profound problem with many rules-of-thumb advanced by regression scholars is

that they lack any measure of effect size. It is generally recognized that an estimated effect size

must precede the determination of appropriate sample size. Effect size enables a researcher to

determine in advance not only what will be necessary for statistical significance, but also what is

required for practical significance (Hinkle & Oliver, 1983).
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The problem with Cohen's (1988) method, and Green's (1991) formula based on Cohen's

method, is that it is designed for use from a fixed model, statistical power approach. And

although Gatsonis and Sampson (1989) use the random model approach, their method is also

based on a statistical power approach to sample size determination. Unfortunately, statistical

power to reject a null hypothesis of zero multiple correlation does not inform us how well a model

will predict in other samples. That is, adequate sample sizes for statistical power tell us nothing

about the number of subjects needed to obtain stable, meaningful regression weights (Cascio,

Valenzi, & Silbey, 1978).

On the other hand, Park and Dudycha (1974) take a random model, cross validation

approach. However, their tables are limited to only a few possible combinations of sample size,

squared correlation, and epsilon; and unfortunately, their math is too complex for most

researchers to derive the information they would need for the cases not tabulated. Additionally,

there is no clear rationale for how to determine the best choice of either epsilon or the probability

to use when consulting the tables (although Stevens, 1992a, implicitly offered .05 and .90,

respectively, as acceptable values).

By combining elements from the cross-validation and shrinkage literature, the rules-of-

thumb literature, and statistical power analysis literature, it was possible to devise a new sample

size formula that does include effect size as part of its calculation. Recall that shrinkage and

cross-validation formulas do include R2, an adequate effect size value according to Cohen (1988).

Therefore, the literature was explored for an acceptable cross-validation formula that could be

manipulated algebraically to become a sample size formula. Additionally, a basic premise which

allows researchers to decide how closely to estimate 0e2 from expected R2 was adapted from Park
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and Dudycha's (1974) method. Finally, a new method for selection of sample sizes in multiple

linear regression was developed.

The formula developed by Rozeboom (1978) was determined to be the most adequate for

present purposes. Rozeboom's cross-validation formula is a version of a widely-accepted formula

developed independently by Lord (1950) and Nicholson (1960) that is "even tidier" (Rozeboom,

1978, p. 1350) because it is linear in all parameters. According to Rozeboom, the Lord-

Nicholson formula works well in practice as applied from either the fixed model or the random

model perspective (see Table 2 for the Lord-Nicholson formula). Additionally, at least one

respected regression text has offered the Rozeboom formula as the recommended cross-validation

formula (Cohen & Cohen, 1983). The Rozeboom (1978, p. 1350) formula is:

1 [(NIT) (1-R2)] (N1-1:0) (1)

where N is sample size, p is the number of predictors, and R2 is the actual sample value.

Manipulation of this formula to solve for N yields:

N = [p (2 - pc2 - R2)] / (R2 (2)

where p is the number of predictors, R2 is the expected sample value, and 0,2 is the estimated

population cross-validity value. The quantity (R2 - pct) is the amount of shrinkage that will occur

if the N calculated in equation (2) is used to calculate shrinkage with equation (1). Substituting
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(E = R2 - 02) and therefore (0e2= R2 - E), into formula (2) to represent acceptable shrinkage, we

get

N {p [2 - (R2-E) - R2]} / E,

where p is the number of predictors, R2 is the expected sample value, and E is the acceptable

absolute amount of shrinkage. Finally, simplifying formula (3) gives us

N [p (2 - 2R2 + E)] / E.

(3)

(4)

Because this formula is based on a cross-validity formula, it is expected to provide good

predictive power when used to calculate sample sizes. Like Park and Dudycha's (1974) method,

the new method allows flexibility in the choice of acceptable shrinkage; that is, one can substitute

any appropriate value for E into formula (4) such as an absolute value (like .03 or .05) or a

proportional value (like .8R2). For example, if a researcher wanted an estimate of 02 not less

than 80% of the sample R2 value, the formula can be reformulated such that E .2R2:

N [p (2 - 1.8R2)] / 0.2R2. (5)

If the researcher did not want the sample R2 to decrease by more than .05 no matter what the

expected value of R2, formula (4) simplifies to

N 20p (2.05 2R2); (6)

or if the researcher did not want the sample R2 to decrease by more than .03, then

N > 33p (2.03 - 2R2). (7)

Although there is intuitive appeal to such a simple method for determining sample sizes in

multiple linear regression, there is no way to compare this method to current methods

mathematically. Therefore, a Monte Carlo power study was performed to determine the efficacy

of the new method as compared to existing methods. Additionally, an attempt was made to make
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sense of the conflicting values provided by several preeminent methods. The next section

describes this study in detail.

METHODS

Ideally, a mathematical proof would be provided that would compare directly the

efficacies of existing sample size methods and the new method offered in this paper. However,

the several sample size selection methods compared here are based on different probability

distributions, making direct comparison problematic. For example, Park and Dudycha (1974)

base their work on the probability density function of p2, Cohen (1988) bases his material on the

noncentral x2 distribution (Gatsonis & Sampson, 1989), Gatsonis and Sampson (1989) base their

method on the distribution of Rxy, and rules-of-thumb are not based on probability distributions at

all.

Fortunately, meaningful comparisons among the power rates of these methods can be

accomplished through a Monte Carlo study. Monte Carlo methods use computer assisted

simulations to provide evidence for problems that cannot be solved mathematically. In Monte

Carlo power studies, random samples are generated and used in a series of simulated experiments

in order to calculate empirical power rates. That is, many random samples are generated such

that the null hypothesis is known to be false (e.g. the multiple correlation is non-null) and then the

actual number of tests that are correctly rejected are counted. After all samples are completed, a

proportion is calculated that represents the actual power rate.

While several scholars have used the term predictive power (e.g. Cascio et al., 1978;

Kennedy, 1988), only Cattin (1980a) has provided a formal definition. Cattin (1980a) noted that

the two common measures of predictive power are the mean squared error of prediction and the
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cross-validated multiple correlation. However, Cattin was discussing predictive power in regard

to the comparison and selection of competing regression models. Although Cattin's definition

could be applied to the current circumstances, it would not provide a measure at all similar to our

general understanding of power. Therefore, for present purposes, predictive power was defined

as (52/R2 or 1- pd, where pd is the percentage decrease in the squared correlation after an

appropriate cross-validity shrinkage estimate is made. For example, a predetermined acceptable

level of shrinkage of 20% provides predictive power equal to .80. Indeed, the method which

produces the highest predictive power using the current definition will also yield the largest

average cross-validity coefficient, thereby satisfying Cattin's definition as well.

The Stein (1960) cross-validity formula (sometimes attributed to Darlington, 1968 and

Herzberg, 1969) was used for IV, because it is has been recommended by many scholars who

have investigated cross-validation techniques from a random model perspective (e.g. Claudy,

1978; Huberty & Mourad, 1980; Kennedy, 1988; Schmitt et al., 1977; Stevens, 1986, 1992a). It

should be noted that the authors are aware that the Stein formula is not uniformly regarded as the

best cross-validation formula (e.g. Cattin, 1980a; Drasgow et al., 1979; Rozeboom, 1978).

Statistical power was calculated as the proportion of total number of correct rejections to the

total tests performed for each testing situation.

Because a variety of factors influence predictive power, several testing situations were

considered. Four factors were manipulated and fully crossed for the present study. First, three

effect sizes were used which represented the expected R2, that is, the assumed population p2: .10,

.25, and .50. The .10 and .25 values were chosen because they are found in Park and Dudycha's

(1974) tables and because they are very close to Cohen's (1988) medium and large effect sizes of
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.13 and .26, respectively. The .50 value was chosen because Stevens (1992a) recommends it as

"a reasonable guess for social science research" (p. 125). Second, data were generated for five

sets of predictors: 2, 3, 4, 8, 15. Again, these numbers were chosen for ready comparison with

tables provided by both Park and Dudycha (1974) and Gatsonis and Sampson (1989). Third, five

separate ranges for the true population p2 were used: .001-.04, .04-.16, .16-.36, .36-.64, and

.64-.999. Correlation matrices were created with R2 values in these ranges using a procedure

described below. These particular ranges were chosen primarily because three of their midpoints

are very close to the effect sizes chosen above.

Finally, seven sample size selection methods were compared: the new method offered in

this paper, Park and Dudycha (1974), Cohen (1988), Gatsonis and Sampson (1989), the 30:1

subject-to-variable ratio from Pedhazur and Schmelkin (1991), the N > 50 + 8p formula from

Green (1991), and the 15:1 ratio from Stevens (1992a). The relevant sample size tables from

both Park and Dudycha and Gatsonis and Sampson were stored as data for access by the

computer program, as were the appropriate tables for Cohen's lambda values. Because of the

resultant simplicity of formulas (6) and (7), the amount of acceptable shrinkage for the new

method, E, was set absolutely. Both the new method and Park and Dudycha's tables were

accessed with E=.03 for expected R2.10 and E=.05 for expected R2>.10; additionally for Park

and Dudycha, P(p-pc E)= .90. Both Cohen's and Gatsonis and Sampson's tables were entered

using power=.90. Turbo Pascal code was written to calculate the sample sizes for the new

method, the ratio methods, the combination method from Green, and Cohen's method (after

looking up tabulated lambda values). It should be noted that for the case of expected R2=.50, the

tabulated sample size for p=.70 from Gatsonis and Sampson was used; for the case of expected

23



Regression Sample Sizes - 23

R2=.10, the p=.30 value was chosen. Because in each of these cases the p value used was less

than the square root of the expected R2, the sample sizes chosen for the Gatsonis and Sampson

method were slightly larger than exact values would have provided. The seven methods do

provide a variety of suggested sample sizes, sometimes drastically different (see Table 3).

Insert Table 3 about here

A Turbo Pascal 6.0 program was written that generated and tested 10,000 samples for

each of these 525 conditions. The program was run as a MS-DOS 6.2 application under

Windows 3.1 on a computer equipped with an Intel DX2/40 processor, which has a built-in

numeric coprocessor. Extended precision floating point variables, providing a range of values

from 3.4x10-4932 to 1.1x104932 with 19 to 20 significant digits, were used. For each sample, the

program performed a standard regression analysis (all predictors entered simultaneously),

calculated the F-statistic and its probability, tested the null hypothesis of zero correlation at a .05

significance level, and calculated Wherry (1931) shrinkage and Stein (1960) cross-validity

coefficients. Because the null hypothesis (Ho: p=0) was known to be false in each sample, each

rejection at a .05 significance level qualified as a correct rejection and was recorded as such. For

each condition, then, empirical statistical rates were calculated simply as the proportion of the

10,000 tests that were correctly rejected. Also for each condition, average shrinkage and average

cross-validity were calculated. Additionally, predictive power for each condition was calculated

as the ratio of the average Stein cross-validity coefficient to the average sample R2. Finally, these

summary data were compared to determine how well the sample size methods performed both
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absolutely and relatively. Simulated samples were chosen randomly to test program function by

comparison with results provided by SPSS/PC+ version 5.0.1.

DATA SOURCE

Because this research focused on power for the random model of regression, data were

generated to follow a joint multivariate normal distribution. The first step was to create

population correlation matrices that met the criteria required by this study, namely, appropriate

numbers of predictors and appropriate p2 values. These correlation matrices were then used to

generate multivariate normal data following a procedure recommended by several scholars

(Chambers, 1977; Collier, Baker, Mandeville, & Hayes, 1967; International Mathematical and

Statistical Library, 1985; Karian & Dudewicz, 1991; Kennedy & Gentle, 1980; Keselman,

Keselman, & Shaffer, 1991; Morgan, 1984; Ripley, 1987; Rubinstein, 1981).

For each range of p2 and number of predictors (25 total conditions), a correlation matrix

was created using the following procedure. Uniform random numbers between 0.0 and 1.0 were

generated using an algorithm suggested by Knuth (1981) and coded in Pascal by Press, Flannery,

Teukolsky, and Vetterling (1989). These values were entered as possible correlations into a

matrix and the squared multiple correlation, R2, was calculated. If the R2 value fell in the required

range, the matrix was then tested to determine whether it was positive definite. Press, Teukolsky,

Vetterling, and Flannery (1992) suggested that the Cholesky decomposition is an efficient method

for performing this test -- if the decomposition fails, the matrix is not positive definite. The

algorithm for the Cholesky decomposition used in this study was adapted from Nash (1990). This

procedure was repeated until the necessary 25 matrices were created. These correlation matrices

were then used to generate the random samples as described below. It is worthwhile to note that
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with given values of R2, sample size, and numbers of predictors, the distribution of the squared

cross-validity coefficient does not depend on the particular form of the population covariance, or

in this case correlation, matrix (Drasgow et al., 1979).

The Cholesky decomposition of a matrix produces a lower triangular matrix, L, such that

LLT =E, where E is a symmetric, positive definite matrix such as a covariance or correlation

matrix. This lower triangular matrix, L, can be used to create multivariate pseudorandom normal

variates through the equation

Zij = + XLT (7)

where Zu is the multivariate normal data matrix, pi is the mean vector, and X contains vectors of

independent, standard normal variates. When the multivariate pseudorandom data is

distributed with mean vector zero and covariance matrix E . Independent pseudorandom normal

vectors, xi, with means, zero, and variances, unity, were generated using an implementation of

the Box and Muller (1958) transformation adapted from Press, Flannery, Teukolsky, and

Vetterling (1989). The Box and Muller algorithm converts randomly generated pairs of numbers

from a uniform distribution into random normal deviates.

RESULTS AND CONCLUSIONS

Results

The seven methods of sample size selection were compared for three cases: (1) where

expected R2, E(R2), fell in the same range as the population p2, (2) where E(R2) > p2, and (3)

where E(R2) < p2. Data were collapsed over the number of predictors for practical reasons: (a)

to provide a manageable number of comparisons, (b) because an acceptable method must be

viable for any number of predictors, and (c) because within each E(R2) level the relative rankings
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for the methods that include effect size were fairly consistent across numbers of predictors'. After

the results have been summarized, the methods will be discussed in terms of both relative

effectiveness and absolute efficacy.

Expected R2 p2

Beginning with Stevens' (1992a) recommended assumption of p2=.50, all methods

produced adequate predictive power over .80 except Cohen (COHEN) and Gatsonis and

Sampson (GS). The five other methods were significantly different from COHEN and all others

except the 15:1 rule (NP15) also were different from GS (see Table 4). Further, none of the

remaining five methods were significantly different from another of the five. Although there was

not as much discrepancy in the empirical statistical power rates as there was in the predictive

power rates, COHEN differed significantly from the other methods (see Table 5). All other

methods provided empirical statistical power rates over .95.

Insert Table 4 about here

Using nearly what Cohen (1988) called a large effect, E(p2)=.25, the results were less

favorable for all methods (see Table 4). The only method to provide predictive power over .80

was the new method (BB). However, a 95% confidence interval shows that BB is not

significantly better than NP15, Park and Dudycha (PD), the 30:1 rule (NP30), or the N 50 + 8p

rule (COMBO). Once again, though, COHEN was significantly lower than four other methods

(BB, NP30, PD, and COMBO) and GS was significantly lower than both BB and NP30. All

methods showed statistical power greater than .85 and no two differed significantly (see Table 5).
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Insert Table 5 about here

Finally, using what is often considered the smallest shared variance to be of practical

significance, 10% or E(R2)=.10, the relative ordering of the methods changed dramatically (see

Table 4). NP15, which does not take effect size into account, showed significantly less predictive

power than the four methods that do consider effect size (BB, PD, COHEN, GS). Only BB and

PD were significantly different from COMBO, which also does not take effect size into account.

The remaining methods were not significantly different in their predictive power. Even though

NP15 and COHEN were the only methods with statistical power rates below .80, they were not

significantly lower than the other methods (see Table 5).

Expected R2> p 2

When expected R2 is greater than the true population p2, all methods fail miserably at all

levels of E(R2). An examination of Table 4 shows that the only method with predictive power for

any E(R2) over .40 is NP30; Table 5 shows that the only methods with statistical power over .60

are BB and NP30. It is important to recognize that the results presented in Table 4 and Table 5

for E(R2)> p2 are aggregated for all values of p2 below the relevant E(R2). For example, when

E(R2)=.25, two ranges of true p2 fall below E(R2). Therefore, individual conditions are examined

in the following paragraphs.

The results are most dramatic for the lowest range, .001<p2<.04. Table 6 shows that for

all methods and both E(R2)=.50 and E(R2)=.25, predictive power rates are less than .02! Indeed,

examination of each predictor level at E(R2)=.50 reveals that predictive power is zero for all cases
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except NP30 with 15 predictors; at E(R2)=.25, only BB and NP30 had any predictive power rates

greater than zero, again when there are 15 predictors. Even for E(R2)=.10, where we might

expect somewhat better results, BB shows predictive power of only .22 and PD shows .07; all

others are under .03. Similarly, statistical power rates are below .40 for all methods under the

conditions of E(R2)=.50 and E(R2)=.25. Although, BB provides statistical power of .61 in the

E(R2)=.10 case, all others fall below .50 (see Table 7).

Insert Table 6 about here

As the true p2 range gets closer to the E(R2) value, the results improve, slightly.

Predictive power rates for all methods remain under .50 for the case where E(R2)=.50 and

.04<p2<.16 (see Table 6). More specifically, NP30 has predictive power greater than .46 and BB

is over .33, but the rest remain below .30. Statistical power improves significantly for this

condition, however, as NP30 has power over .80, BB and COMBO over .70, and PD over .62.

Indeed, all methods show statistical power over .50 except COHEN and GS, which are

significantly lower than the rest. For the condition of E(R2)=.25 and the range .04<p2<.16, BB

and NP30 have predictive power over .48 and .46, respectively; PD is above .34, but all the rest

are below .30. Once again, statistical power is better than predictive power as shown by power

rates of .81 for both BB and NP30, .73 for PD, and .71 and .60 for COMBO and NP15,

respectively (see Table 7).
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Insert Table 7 about here

Finally, for the condition where E(R2)=.50 and .16<p2<.36, things improve even further.

NP30 has predictive power over .79, BB is over .71, and COMBO is over .69. Both PD and

NP15 have predictive power over .60, while COHEN and GS are again significantly lower than

then rest, both being below .13 (see Table 6). All statistical power rates climb to over .90 except

GS and COHEN, which show empirical power rates of .51 and .27, respectively (see Table 7).

Expected R2 < p2

The final case concerns conditions where the expected R2 was less than the true

population p2. In this case, more subjects usually will be sampled than necessary. Indeed, all

methods show averaged results with acceptable predictive power and adequate statistical power

(only COHEN falls below .80, for predictive power when E(R2)=.50). Indeed, examination of

specific results shows that as p2 increases relative to E(R2), power increases to a point where one

is relatively certain to get both sufficient statistical power and reliability of regression coefficients.

Discussion

It was expected that the sample size methods that use effect size would be most

appropriate for the situations where E(R2) fell in the same range as the true population p2.

Indeed, this was the case and is a critical finding of the current research. Subject-to-variable

ratios, and other rules-of-thumb that do not account for any measure of effect size, show

adequate power both relatively and absolutely for moderate-to-large E(R2). For example,

Stevens' (1986, 1992a) suggestion of a 15:1 subject-to-predictor ratio does indeed provide
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empirical power rates similar to Park and Dudycha's (1974) method -- when E(R2)z.50.

However, as one expects a smaller R2, the rules-of-thumb become inadequate. For example, with

E(R2)=.50, NP30 provided the highest empirical power ranking; however, as E(R2) was reduced

to .25 and .10, NP30 was only the second best and then the fifth best, respectively (see Table 8).

Contrast this with the COHEN method which moved from the bottom ranking when E(R2)=.50

and E(R2)=.25 to fourth, better than all methods without effect size, when E(R2)=.10.

Additionally, the miserable results for all methods when E(R2)>p2, and also the overkill when

E(R2)<p2, attest to the importance of effect size. Therefore, the first conclusion to be made is

that researchers cannot ignore effect size in determining sample size in multiple regression analysis

any more than they can for any other statistical design.

Insert Table 8 about here

When one can make a reasonable guess at the population p2, either from past research,

personal experience, or based on practical significance, one has a good chance of determining the

number of subjects necessary to have adequate power to detect that value as significant in a

sample. More importantly perhaps, one has a much better chance of deriving regression

coefficients that will be meaningful and stable when the regression model is used for prediction

purposes. Indeed, these two types of power go hand-in-hand; it was determined empirically in the

present study that predictive power and statistical power have a correlation of .9083 (p<.001).

Still, the absolute values of the two types of power differ relative to what might be considered an

acceptable minimum level; specifically, statistical power rates were often above .80 for cases
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where predictive power was still much less. The second main conclusion to be drawn in the

present research, then, is that, given the high correlation between the two types of power, if

researchers choose sample sizes to meet predictive power guidelines, they will be practically

assured of sufficient statistical power for their study.

Finally, there is the question of which method best ensures predictive, and therefore

statistical, power. First, the sample size selection method developed in this paper compared

favorably to methods from Cohen (1988), Gatsonis and Sampson (1989), Park and Dudycha

(1974), and three rules-of-thumb. In fact, the new method was the most consistent, best

performer: it had either the highest or second highest mean rank for both predictive and statistical

power for each level of E(R2). Further, the new method ranked first overall; specifically, for 58 of

the 75 combinations of E(R2), predictors, and range of p2, it ranked first or second for predictive

power. However, just as important as how it performed relative to the other methods is how the

new method performed absolutely.

Given the large number of replications (10,000) performed for each condition, one could

argue that the empirical power rates observed for each method represent close approximations to

true power rates. For several reasons, results were averaged across number of predictors;

however, if the results are analyzed from an absolute perspective, one finds that the new method

most often exceeds acceptable power levels. For example, the most important situation concerns

the cases where E(R2)-, p2. In these conditions, the new method reached .80 for predictive power

in 10 out of the 15 cases; it exceeded .70 in all but one situation (see Table 9). For comparison,

NP30 exceeded .80 in eight cases, COMBO six, and PD and NP15 five; both PD and NP30
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exceeded .70 in 10 cases (however, NP30 never reached .70 for E(R2)=.10 and PD only did

once).

Insert Table 9 about here

The new method is preferable to subject-to-variable ratios and other rules-of-thumb for

three reasons: (a) rules-of-thumb do not account for effect size and therefore have limited value

as p2 decreases, (b) despite Stevens' (1986, 1992a) suggestion of using p2=.50, it may be more

likely that p2=.50 is an upper bound for social science research (Rozeboom, 1981), and (c) the

new method is just as simple to use in its formula (6) form and provides consistently better results.

The new method is preferable to both Cohen's method and Gatsonis and Sampson's method for all

conditions tested here. Although both COHEN and GS performed relatively well for E(R2)=.10,

the new method still performed better relatively and was the only acceptable method absolutely.

Thus, the only remaining comparison is between the new method and Park and Dudycha's

(1974) method. Because preliminary work showed that the new formula approximated Park and

Dudycha's values at between 90% and 95% probability for most predictor tables, there was hope

that the method would perform well in this study. Indeed, this favorable comparison was crucial

for two reasons: (a) because both methods are based on a cross-validation approach and (b)

because the Park and Dudycha method has mathematical derivations to support it. Indeed, the

Monte Carlo results found here suggest that both methods perform very well both absolutely and

also relative to other methods. The only other method that came close was NP30, at the cost of

overly large samples in the E(R2)=.50 case (in fact, most methods provided sample sizes too large

33



Regression Sample Sizes - 33

for that situation). The advantages that the new method provides in consistently higher power

rates are offset sometimes by consistently higher recommended sample sizes. As Tabachnick and

Fidell (1989) wrote, "for both statistical and practical reasons, then, one wants to measure the

smallest number of cases that has a decent chance of revealing a significant relationship if, indeed,

one is there" (p. 129). Of course, sometimes these larger sample sizes are required. In particular,

as E(R2) decreases, the larger samples required by the new method are necessary.

The researcher must balance the two concerns for the particular problem at hand.

However, the preliminary work done for this study suggested that, for larger expected R2 values,

it may be possible to use a less conservative value for E, say .075 or .10, and still approximate

Park and Dudycha's (1974) tables at nearly the 90% probability level. Indeed, a supplementary

analysis using formula (5) showed that when E(R2)=.50, and therefore E=.10, the new method

always provided empirical predictive power over .70 (over .80 in four of five cases) with only

52% of the sample size required. Indeed, formula (5) had power over .80 in 11 of the 15 cases.

Unfortunately, the formula lost power rapidly as E(R2) increased beyond .50; therefore, it appears

that .10 is a maximum threshold for E.

The new method thus provides not only better recommendations but also quite a bit more

flexibility than any other method presented in this paper. Acceptable levels of shrinkage can be

approached two ways, as absolute levels (as in formulas 6 and 7) or as percentage decreases (as in

formula 5). Note that although this level of shrinkage will always underestimate the actual

shrinkage for the Stein and Lord-Nicholson cross-validity formulas, it does provide the most

reasonable approximation. Therefore, the final recommendation, based on this research, is that

either the new method developed here or Park and Dudycha's (1974) method will provide
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adequately powerful sample size for most situations. Indeed, they are the only two methods that

work relatively well in all circumstances. However, when a reasonable effect size cannot be

approximated or when E(R2) is small, the new method will provide more conservative, and

therefore -- some would argue -- better, results.

Suggestions for future research

Although this study has limitations typical of Monte Carlo studies, it has provided

important insight into sample size selection and power analysis in multiple regression. Further

research can be performed in this area using similar methods, or using real data. For example, a

fixed-model perspective can be tested. One would expect similar results for predictive power, but

the fixed-model methods might prove more useful. Also, the data can be manipulated in several

ways. For example, using non-normal data or multicollinear or suppressor variable relationships.

In this study, the standard regression approach was used in which all predictors are entered

simultaneously and each is tested as if it were the last to enter; in future studies hierarchical

models can be studied. It was assumed that predictors were selected a priori; that is, it was

known in advance of building the regression model which independent variables would be

included in the analysis. However, it may be possible to study sample sizes required for the use of

preselection processes (e.g. stepwise regression used to select the best subset of predictors).

EDUCATIONAL IMPORTANCE OF THE STUDY

The research presented in this paper is important for the reasons mentioned at the outset.

In particular, sample sizes for multiple linear regression must be chosen so as to provide adequate

power for both statistical significance and generalizability of results. It is well-documented and

unfortunate that researchers do not heed this guideline. Type I errors are treated with extreme
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caution, but Type H errors are all but ignored until the research fails to find results; then lack of

power often is used to rationalize the failure.

For whatever reason, empirical study into power for multiple regression has been lacking.

Rules-of-thumb have existed for many decades, but little empirical or mathematical support has

been offered for them. Indeed, this study has found very limited value for rules-of-thumb. Park

and Dudycha (1974) provided one of the two best methods for sample size selection, but has been

all but ignored in both textbooks and research methodology. Indeed, Stevens (1986, 1992a) is the

only multivariate text or regression text author even to cite the work in his bibliography! Perhaps

the results of this research and the new method will bring more attention to the issue in general

and Park and Dudycha's work in particular. (Park and Dudycha's method still has the advantage

of mathematical theory although it proved no better empirically.) Additionally, it is hoped that

researchers will recognize that cross-validity shrinkage is more important than the adjusted R2

printed out by the major statistical packages. Even though the average difference between

adjusted R2 and the given population p2 was only .004 (standard deviation of .006) for the 525

cases, adjusted R2 is not appropriate for prediction studies -- a cross-validity formula must be

used.

Further, it is hoped that the evidence presented to recommend the new method developed

in this paper, along with its simplicity, will encourage researchers to consider power a priori, as

should be the case. Although power in regression may have a slightly different meaning than in

other statistical designs, it is no less important. The authors believe that absent any meaningful

guess for the true p2, the researcher must consider carefully what will be practically significant.

An appropriate sample size must be chosen not only so that the study will have adequate power to
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find that degree a relationship if it exists, but also that if a significant model is found, its regression

coefficients will be meaningful and stable if applied to another sample from the population. The

reader should recognize the potential danger in selecting an expected R2 that is much above the

true p2. When in doubt, a conservative approach would suggest using a low-to-moderate value

for E(R2), say .25, and therefore a larger sample. Finally, no statistical analysis can repair damage

caused by an inadequate sample. The reader must remember that a sample must not only be large

enough, but also must be random and appropriately representative of the population to which the

research will generalize (Cooley and Lohnes, 1971; Miller & Kunce, 1973).
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Footnotes

'It should be noted that for lower expected R2 (especially E(R2)=.10), the results were not

as consistent across predictors as they were for higher expected R2 values. That is, for all

predictor values at E(R2)=.50, the relative rankings for both statistical and predictive power were

BB highest, PD, GS, and COHEN lowest. However, for E(R2)=.25 and two predictors, GS very

slightly better than PD, with BB as the most powerful and COHEN the least; but with E(R2)=.25

and more than two predictors the rankings were the same as mentioned above for E(R2)=.50.

Finally, for E(R2)=.10, the GS method showed the highest relative power for two predictors,

followed by BB, COHEN, and then PD. For three predictors, the rankings were BB highest, then

GS, PD, and COHEN. For four, eight, and fifteen predictors, BB was most powerful, followed

by PD, GS, and COHEN. Indeed, a review of Table 3 shows that the GS and COHEN methods

require larger sample sizes for both a small number of predictors and small values of expected R2.
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Table 1

Examples of Cross-Validation and Shrinkage Formulas

Formula Attributed To:

R.2 = 1 - (NT- 1 )( 1 -R2)

(NT)

R.2= 1 - (N-1) (1-R2)

(N-P-1)

Ra2= R2- p (1-R2)
(N-p-1)

Rae = R2- p (1-R2)

(N-13')

R.2= R2 - (p-2)(1-R2) - 2 (N-3) (1-R2)
(N-p-1) (N-p-1)(N-p+1)

R.2= 1 - (N-1) (N+p+1) (1-R2)
(N-p-1) N

Rae = 1 - (N-2) (N+1) (1-R2)
(N-p-1) (N-p-2) N

R.2= 1 - (N+p) (1-R2)

(N-P)

Rc2= 1 - (N+p+1) (1-R2)
(N-p-1)

Wherry (1931)

Wherry (1931); Ezekiel (1930);
McNemar (1962);
Lord & Novick (1968);
Ray (1982, p. 69) [SAS]

Norusis (1988, p. 18) [SPSS]

Dixon (1990, p. 365) [13MDIV

Olkin & Pratt (1958)

Nicholson (1960)
Lord (1950)

Stein (1960)
Darlington (1968)

Rozeboom (1978)

Uhl & Eisenberg (1970)
Lord (1950)

Note: Rae represents an estimate of p2; k2 is an estimate of p

Ip'=p+1 with an intercept, p'=p if the intercept=0.
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Table 2

Rules-of-Thumb for Sample Size Selection

Rule Author(s)

N z 10p Miller & Kunce, 1973, p. 162
Halinslci & Feldt, 1970, p. 157 (for prediction if R z .50)
Neter, Wasserman, & Kutner, 1990, p. 467

N z 15p Stevens, 1992, p. 125

N z 20p Tabachnick & Fidell, 1989, p. 128 (N >_ 100 preferred)
Halinski & Feldt, 1970, p. 157 (for identifying predictors)

N z 30p Pedhazur & Schmelkin, 1990, p. 447

N z 40p Nunnally, 1978 (inferred from text examples)
Tabachnick & Fidell, 1989, p. 129 (for stepwise regression)

50+p Harris, 1985, p. 64

N z 10p + 50 Thorndike, 1978, p. 184

N > 100 Kerlinger & Pedhazur, 1973, p. 442 (preferably N>200)

N z (2K2-1) + K2p Sawyer, 1982, p. 95 (K is an inflation factor due to
(K2-1) estimating regression coefficients)

Note: In the formulas for sample size above, N represents the suggested sample size and p represents the
number of predictors (independent variables) used in the regression analysis.
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Sample Sizes Suggested by Each Method for Each Level of Expected R2

Regression Sample Sizes - 48

Number of
Predictors Method E(R2)=.50

Sample Size for
E(R2)=.25 E(R2)=.10

2 New Method (BB) 42 62 122
Park & Dudycha (PD) 31 45 85
Cohen (COHEN) 13 38 115
Gatsonis & Sampson (GS) 20 45 135
30:1 (NP30) 60 60 60
50 + 8p (COMBO) 66 66 66
15:1 (NP15) 30 30 30

3 New Method (BB) 63 93 183
Park & Dudycha (PD) 50 71 133
Cohen (COHEN) 14 44 130
Gatsonis & Sampson (GS) 23 51 151
30:1 (NP30) 90 90 90
50 + 8p (COMBO) 74 74 74
15:1 (NP15) 45 45 45

4 New Method (BB) 84 124 244
Park & Dudycha (PD) 66 93 173
Cohen (COHEN) 16 48 144
Gatsonis & Sampson (GS) 25 55 165
30:1 (NP30) 120 120 120
50 + 8p (COMBO) 82 82 82
15:1 (NP15) 60 60 60

8 New Method (BB) 168 248 488
Park & Dudycha (PD) 124 171 311
Cohen (COHEN) 20 61 183
Gatsonis & Sampson (GS) 32 69 205
30:1 (NP30) 240 240 240
50 + 8p (COMBO) 114 114 114
15:1 (NP15) 120 120 120

15 New Method (BB) 315 465 915
Park & Dudycha (PD) 214 292 524
Cohen (COHEN) 26 78 235
Gatsonis & Sampson (GS) 42 88 256
30:1 (NP30) 450 450 450
50 + 8p (COMBO) 170 170 170
15:1 (NP15) 225 225 225
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Table 4

Empirical Predictive Power Rates (averaged across number of predictors)

E(R2) Method E(R2) z p 2 E(R2)> p 2 E(R2) <p 2

.50 New Method (BB) .9137 (.03) .3496 (.32) .9652 (.03)
Park-Dudycha (PD) .8835 (.03) .2807 (.28) .9529 (.04)
Cohen (COHEN) .3650 (.27) .0000 (.00) .7724 (.11)
Gatsonis-Sampson (GS) .6206 (.19) .0427 (.10) .8814 (.06)
30:1 N/p ratio (NP30) .9402 (.02) .4258 (.36) .9761 (.02)
N z 50 + 8p (COMBO) .9020 (.04) .3238 (.30) .9700 (.02)
15:1 N/p ratio (NP15) .8780 (.04) .2663 (.28) .9498 (.04)

.25 New Method (BB) .8028 (.05) .2477 (.29) .9596 (.03)
Park-Dudycha (PD) .7274 (.07) .1754 (.23) .9432 (.04)
Cohen (COHEN) .4594 (.19) .0122 (.03) .8782 (.10)
Gatsonis-Sampson (GS) .5193 (.18) .0321 (.06) .8944 (.09)
30:1 N/p ratio (NP30) .7966 (.05) .2385 (.29) .9582 (.03)
N 50 + 8p (COMBO) .6916 (.09) .1387 (.16) .9362 (.05)
15:1 N/p ratio (NP15) .6082 (.10) .0964 (.14) .9140 (.05)

.10 New Method (BB) .7052 (.14) .2229 (.17) .9524 (.04)
Park-Dudycha (PD) .5863 (.17) .0682 (.07) .9295 (.06)
Cohen (COHEN) .5097 (.10) .0107 (.02) .9076 (.09)
Gatsonis-Sampson (GS) .5574 (.11) .0265 (.06) .9179 (.08)
30:1 N/p ratio (NP30) .4665 (.23) .0113 (.02) .9041 (.09)
N z 50 + 8p (COMBO) .2789 (.10) .0000 (.00) .8543 (.13)
15:1 N/p ratio (NP15) .1926 (.15) .0000 (.00) .8120 (.16)

Note: Standard deviations are in parentheses after the means.
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Table 5

Empirical Statistical Power Rates (averaged across number of predictors)

E(R2) Method E(R2) ,=: p 2 E(R2)>p 2 E(R2)<p 2

.50 New Method (BB) 1.0000 (.00) .6483 (.35) 1.0000 (.00)
Park-Dudycha (PD) .9999 (.00) .5824 (.36) .9999 (.00)
Cohen (COHEN) .7294 (.15) .1483 (.10) .9591 (.05)
Gatsonis-Sampson (GS) .9550 (.05) .2625 (.20) .9971 (.00)
30:1 N/p ratio (NP30) 1.0000 (.00) .7257 (.33) 1.0000 (,OO)
N 50 + 8p (COMBO) 1.0000 (.00) .6333 (.35) 1.0000 (.00)
15:1 N/p ratio (NP15) .9997 (.00) .5678 (.36) .9999 (.00)

.25 New Method (BB) .9899 (.02) .6019 (.33) 1.0000 (.00)
Park-Dudycha (PD) .9671 (.07) .5054 (.33) 1.0000 (.00)
Cohen (COHEN) .8701 (.06) .2651 (.17) .9997 (.00)
Gatsonis-Sampson (GS) .9180 (.05) .3030 (.20) .9999 (.00)
30:1 N/p ratio (NP30) .9876 (.03) .5951 (.33) 1.0000 (.00)
N z 50 + 8p (COMBO) .9878 (.02) .4571 (.30) 1.0000 (.00)
15:1 N/p ratio (NP15) .9046 (.15) .3998 (.31) .9999 (.00)

.10 New Method (BB) .9294 (.15) .6108 (.33) .9999 (.00)
Park-Dudycha (PD) .8810 (.21) .4783 (.28) .9993 (.00)
Cohen (COHEN) .8923 (.14) .3284 (.11) .9999 (.00)
Gatsonis-Sampson (GS) .9248 (.12) .3731 (.12) 1.0000 (.00)
30:1 N/p ratio (NP30) .8032 (.26) .3816 (.26) .9957 (.02)
N z 50 + 8p (COMBO) .7065 (.20) .2091 (.07) .9959 (.01)
15:1 N/p ratio (NP15) .6049 (.32) .1986 (.12) .9677 (.09)

Note: Standard deviations are in parentheses after the means.
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Table 6

Predictive Power for the Case E(122)>p 2 (averaged across number of predictors)

E(R2) Method .16<p2<.25 .04<p2<.16 .001<p2<.04

.50 New Method (BB) .7153 (.07) .3334 (.20) .0000 (.00)
Park-Dudycha (PD) .6242 (.10) .2178 (.14) .0000 (.00)
Cohen (COHEN) .0000 (.00) .0000 (.00) .0000 (.00)
Gatsonis-Sampson (GS) .1280 (.16) .0000 (.00) .0000 (.00)
30:1 N/p ratio (NP30) .7969 (.05) .4679 (.22) .0126 (.03)
N 50 + 8p (COMBO) .6914 (.09) .2800 (.11) .0000 (.00)
15:1 N/p ratio (NP15) .6087 (.10) .1901 (.16) .0000 (.00)

.25 New Method (BB) .4803 (.22) .0150 (.03)
Park-Dudycha (PD) .3508 (.20) .0000 (.00)
Cohen (COHEN) .0244 (.05) .0000 (.00)
Gatsonis-Sampson (GS) .0642 (.08) .0000 (.00)
30:1 N/p ratio (NP30) .4658 (.23) .0112 (.03)
N 50 + 8p (COMBO) .2775 (.11) .0000 (.00)
15:1 N/p ratio (NP15) .1927 (.15) .0000 (.00)

.10 New. Method (BB) .2229 (.17)
Park-Dudycha (PD) .0682 (.06)
Cohen (COHEN) .0107 (.02)
Gatsonis-Sampson (GS) .0265 (.06)
30:1 N/p ratio (NP30) .0113 (.03)
N 50 + 8p (COMBO) .0000 (.00)
15:1 N/p ratio (NP15) .0000 (.00)

Note: Standard deviations are in parentheses after the means.
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Table 7

Statistical Power for the Case E(R21>p 2 (averaged across number of predictors)

E(R2) Method .16<p2<.25 .04<p2<.16 .001<p2<.04

.50 New Method (BB) .9605 (.08) .7087 (.30) .2758 (.19)
Park-Dudycha (PD) .9175 (.14) .6259 (.31) .2037 (.12)
Cohen (COHEN) .2684 (.07) .1146 (.02) .0619 (.01)
Gatsonis-Sampson (GS) .5126 (.09) .1963 (.04) .0787 (.01)
30:1 N/p ratio (NP30) .9876 (.03) .8069 (.26) .3827 (.27)
N z 50 + 8p (COMBO) .9869 (.02) .7069 (.20) .2061 (.07)
15:1 N/p ratio (NP15) .9045 (.15) .5976 (.33) .2014 (.13)

.25 New Method (BB) .8114 (.26) .3924 (.27)
Park-Dudycha (PD) .7327 (.29) .2780 (.17)
Cohen (COHEN) .4122 (.10) .1180 (.02)
Gatsonis-Sampson (GS) .4722 (.11) .1338 (.03)
30:1 N/p ratio (NP30) .8056 (.26) .3846 (.27)
N z 50 + 8p (COMBO) .7065 (.20) .2078 (.07)
15:1 N/p ratio (NP15) .5998 (.32) .1998 (.13)

.10 New Method (BB) .6108 (.33)
Park-Dudycha (PD) .4783 (.28)
Cohen (COHEN) .3284 (.11)
Gatsonis-Sampson (GS) .3731 (.12)
30:1 N/p ratio (NP30) .3816 (.26)
N z 50 + 8p (COMBO) .2091 (.07)
15:1 N/p ratio (NP15) .1986 (.12)

Note: Standard deviations are in parentheses after the means.
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Table 8

Mean Power Ranks for Methods

Method E(R2)=.50 E(R2)=.25 E(R2)=.10 Overall

Predictive Power

New Method (BB) 2.82 (0.95) 1.64 (1.11) 1.28 (0.68) 1.91 (1.13)

Park-Dudycha (PD) 3.90 (0.46) 3.70 (0.79) 2.70 (0.89) 3.43 (0.90)

Cohen (COHEN) 6.22 (1.16) 6.24 (1.14) 4.28 (0.75) 5.58 (1.38)

Gatsonis-Sampson (GS) 5.70 (0.88) 5.28 (0.85) 3.08 (1.33) 4.69 (1.55)

30:1 N/p ratio (NP30) 1.64 (1.11) 2.48 (0.77) 4.42 (1.19) 2.85 (1.56)

N z 50 + 8p (COMBO) 3.38 (1.51) 3.72 (1.40) 5.96 (0.90) 4.35 (1.72)

15:1 N/p ratio (NP15) 4.34 (0.75) 4.94 (1.08) 6.28 (0.85) 5.19 (1.21)

Statistical Power

New Method (BB) 2.6.0 (0.63) 2.36 (1.23) 2.58 (1.24) 2.51 (1.06)

Park-Dudycha (PD) 3.62 (0.63) 3.54 (0.79) 3.18 (0.85) 3.45 (0.78)

Cohen (COHEN) 6.88 (0.60) 5.84 (1.43) 3.86 (0.67) 5.53 (1.59)

Gatsonis-Sampson (GS) 5.82 (0.63) 4.86 (1.03) 3.14 (1.06) 4.61 (1.44)

30:1 N/p ratio (NP30) 1.92 (0.94) 2.76 (0.94) 4.16 (1.05) 2.95 (1.34)

N _>_ 50 + 8p (COMBO) 3.02 (1.36) 3.68 (1.22) 5.26 (1.32) 3.99 (1.59)

15:1 N/p ratio (NP15) 4.14 (0.86) 4.96 (1.38) 5.82 (1.38) 4.97 (1.39)

Note: Standard deviations are in parentheses after the means. Lower rank means better power.
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Table 9

Frequency of Minimum Power Values for Each Method

E(R2)=.50 E(R2)=.25 E(R2)=.10

Power .7 .8 .7 .8 .7 .8
Method

Predictive Power

New Method (BB) 5 5 5 3 4 2

Park-Dudycha (PD) 5 5 4 0 1

Cohen (COHEN) 0 0 0 0 0 0

Gatsonis-Sampson (GS) 2 1 1 0 0 0

30:1 N/p ratio (NP30) 5 5 5 3 0 0

N 50 + 8p (COMBO) 5 5 2 1 0 0

15:1 N/p ratio (NP15) 5 5 0 0 0 0

Statistical Power

New Method (BB) 5 5 5 5 4 4

Park-Dudycha (PD) 5 5 5 5 4 4

Cohen (COHEN) 3 3 5 4 4 4

Gatsonis-Sampson (GS) 5 5 5 5 5

30:1 N/p ratio (NP30) 5 5 5 5 4 3

N z 50 + 8p (COMBO) 5 5 5 5 2 2

15:1 N/p ratio (NP15) 5 5 4 4 2 2
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